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1 Introduction

Pearson's correlation is probably one of the most used statistical quantities. But it can seriously be
a®ected by only one outlier. Devlin et al (1975) did show that its in°uence function is unbounded.
Several robust measures of correlation have already been proposed in the literature. We refer to the
book of Shevlyakov and Vilchevski (2001) containing a chapter on robust estimation of correlation.
In this note focus is on popular nonparametric correlation measures like Spearman, Kendall and
the Quadrant correlation, which are widely used in the applied sciences. Recall that for a sample
f(xi; yi); 1 · i · ng the Quadrant correlation is de¯ned as

r̂Q =
1

n

nX
i=1

signf(xi ¡medianj(xj))(yi ¡medianj(yj))g;

the Kendall correlation coe±cient as

r̂K =
2

n(n¡ 1)
X
i<j

sign ((xi ¡ xj)(yi ¡ yj)) ;

while the Spearman coe±cient is simply the standard correlation computed from the univariate
ranks of the observations. While it is clear that these popular sign and rank based correlation
measures have some intrinsic robustness properties, a formal robustness analysis seems not to have
been completed yet.

Local robustness can be measured by means of in°uence functions (IF). The in°uence function
gives us the e®ect that an outlying observation may have on an estimator. Computing the IF of
the Quadrant, Spearman, and Kendall correlation measures is not di±cult. It seems that Grize
(1978) was the ¯rst one who listed expressions for the IF. From the in°uence functions, gross-error
sensitivities and asymptotic variances can be computed. Expressions for the asymptotic variances
are quite complicated in case that the population correlation deviates from zero. Since robustness
often comes at the price of a loss in e±ciency, a numerical comparison of e±ciencies of nonpara-
metric correlation measures compared to robust correlation measures derived from bivariate robust
scatter matrices has been made by Croux and Dehon (2005). They conclude that the Spearman and
Kendall correlation measures give an excellent compromise between local robustness and high e±-
ciency. They also conducted a simulation study comparing the e±ciency of the di®erent estimators
of correlation in presence of outliers.

Here we want to focus on the global robustness of the correlation measures by computing their
maxbias curves. Note that is not so clear whether the breakdown point, another measure of global
robustness, is a useful concept for correlation estimates (see Davies and Gather, 2005).
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2 Maxbias Curves

We wish to compare the robustness performance of the robust correlation estimates using the
concept of maxbias, which is known to provide the most complete description of the robustness
properties of an estimate. Roughly speaking, the maxbias gives the worst-case asymptotic bias that
can be caused by a certain fraction of contamination, ²; in the data. A plot of the contamination
fraction, ²; versus the maxbias, B (²) ; is called maxbias curve.

Little is known about the maxbias of robust correlation estimates. This gap in the literature may
be partly due to the technical di±culties caused by the lack of equivariance of correlation estimates.
In the absence of key equivariance properties one cannot assume without loss of generality that the
\true" correlation ½ has some ¯xed cannonical value - e.g. ½ = 0 - but must work with all possible
values of ½: Comparisons also become trickier in the absence of equivariance because the order of
preference of two competing robust estimates may reverse for di®erent values of ½:

Let H denote the bivariate distribution which is supposed to generate the good data. The
correlation measure R can move upwards or downwards in presence of contamination. Therefore
we de¯ne the correlation explosion curve as

B+(²;R;H) = sup
K
R((1¡ ")H + "K);

and the correlation implosion curve as

B¡(²;R;H) = inf
K
R((1¡ ²)H + ²K);

where K can be any contaminating distribution and 0 · ² < 1 is the level of contamination. The
¯nal maxbias curve of a correlation functional R at the bivariate distribution H is then computed
as

Maxbias(²;R;H) = g(B+(²;R;H); B¡(²;R;H); R(H)):

The choice of the loss function g is a bit tricky, since it is not clear whether upwards or down-
ward bias need to be treated symmetrically. A reasonable choice seems to be g(b+; b¡; ½) =
max(j tanh¡1(½) ¡ tanh¡1(b+)j; j tanh¡1(½) ¡ tanh¡1(b¡)j): Note that the above setting with an
implosion and explosion curve and the choice of a loss function is similar as for maxbias curves for
scale functionals (see Martin and Zamar, 1993). In most cases, the worst contaminating distribution
K is a point mass distribution or Dirac measure.

Expressions for the maxbias curves of several non-parametric correlation measures have been
computed and formally proved. Moreover, a location-corrected version of the Quadrant correlation
is proposed, which is shown to attain Hubers' min-max bias bound. Furthermore, the maxbias curve
of robust correlations derived from bivariate scatter matrices is obtained. Numerical comparisons
between the di®erent estimators have been made at the normal bivariate model.
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