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Suppose that the observations Y1, . . . , YN follow the simple regression model

Yi = α + βxi + ei, i = 1, . . . , N, (1)

where x1, . . . , xN are known constants, e1, . . . , eN are i.i.d. errors with an unknown distribution
function F and α and β are unknown parameters. We will be interested only in the estimation of the
slope parameter β. One way how to estimate this parameter is to minimize the Jaeckel measure of
dispersion

∑N
i=1(Yi−xib)(Ri(b)− N+1

2 ), where R1(b), . . . , RN (b) is the vector of ranks for random
variables Y1 − x1b, . . . , YN − xNb. The resulting estimator TR can be calculated as the weighted
median of the set of pairwise slopes Yi−Yj

xi−xj
, where each slope is assigned weight proportional to

|xi − xj |. It is well known that under some mild conditions this ‘generalized’ Hodges-Lehmann
estimator RN admits the representation

QN (TR − β) =
1
γ

N∑

i=1

xi(F (ei)− 1
2 ) + RN , γ =

∫ +∞

−∞
f(x)2dx, Q2

N =
N∑

i=1

x2
i

and the remainder term RN is under some appropriate conditions on xi and F of order OP (N− 1
2 )

(see Jurečková, Sen (1996)). We will find the asymptotic representation of
√

NRN . The key
tool for derivation of this von Mises expansion up to the second term will be Theorem 2.1. of
Jurečková (1973).

Analogously, we get a similar second order asymptotic representation for the M -estimator. At
first we will suppose the intercept α in (1) to be zero. In this case the M -estimator is defined as a
solution of the equation

N∑

i=1

xiψ(Yi − b xi). (2)

Similarly as for R-estimators, under some appropriate conditions the first order representation of
M -estimator is

QN (TM − β) =
1
γ

N∑

i=1

xi(ψ(ei)− 1
2 ) + RN , γ =

∫ +∞

−∞
ψ′(x)f(x)dx.

And we will again find the asymptotic representation of
√

NRN . Particularly, we will be interested
in the special case ψ(x) = cF (x), where F is the distribution function of errors in (1). For this choice
of ψ the estimators TR and TM are first order asymptotic equivalent, i.e.

√
N(TR − TM ) = oP (1).

We will find that under some smoothness conditions on ψ and F the difference
√

N(TR − TM ) is
of order OP (N− 1

2 ) and derive an asymptotic representation of this difference. This representation
also implies that the order OP (N− 1

2 ) is exact. Of course, in practice we do not know the true
distribution function F . But for the choice ψ(x) = c(F0(x) − 1

2 ) a suitably normalized difference
TR − TM can be used as a simple measure of goodness of fit, that the errors in the regression (1)
have just the distribution F0. The investigation of using our asymptotic results in the goodness of
fit testing is in progress.
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Unfortunately, unlike the R-estimator the M -estimator defined by (2) is neither location in-
variant nor scale equivariant. Making the M -estimator location invariant by adding the intercept
presents only minor difficulties. No extra conditions are needed, but the second order term in
von Mises expansion will be a little more complex. On the contrary, studentization of the M-
estimator will require not only new stringent conditions on ψ and F but it also complicates the
second order term in von Mises expansion in a nontrivial way, especially when the distribution
function F of errors in (1) is asymmetric. These results, even in the most simple case of the
M -estimator defined by (2), generalize the results of Jurečková, Sen (1990).


