Second Order Asymptotics for R-estimators and M-estimators for a Simple Linear Regression

M. Omelka

Keywords: M-estimator, R-estimator, von Mises expansion

Suppose that the observations Y_1, \ldots, Y_N follow the simple regression model

$$Y_i = \alpha + \beta x_i + \epsilon_i, \quad i = 1, \ldots, N,$$

where x_1, \ldots, x_N are known constants, $\epsilon_1, \ldots, \epsilon_N$ are i.i.d. errors with an unknown distribution function F and α and β are unknown parameters. We will be interested only in the estimation of the slope parameter β. One way how to estimate this parameter is to minimize the Jaeckel measure of dispersion $\sum_{i=1}^{N}(Y_i - x_i\beta)(R_i(b) - \frac{N+1}{2})$, where $R_1(b), \ldots, R_N(b)$ is the vector of ranks for random variables $Y_1 - x_1b, \ldots, Y_N - x_Nb$. The resulting estimator T_R can be calculated as the weighted median of the set of pairwise slopes $\frac{Y_i - Y_j}{x_i - x_j}$, where each slope is assigned weight proportional to $|x_i - x_j|$. It is well known that under some mild conditions this ‘generalized’ Hodges-Lehmann estimator R_N admits the representation

$$Q_N(T_R - \beta) = \frac{1}{\gamma} \sum_{i=1}^{N} x_i(F(e_i) - \frac{1}{2}) + R_N, \quad \gamma = \int_{-\infty}^{+\infty} f(x)^2 dx, \quad Q_N^2 = \sum_{i=1}^{N} x_i^2$$

and the remainder term R_N is under some appropriate conditions on x_i and F of order $O_P(N^{-\frac{1}{2}})$ (see Jurečková, Sen (1996)). We will find the asymptotic representation of $\sqrt{N}R_N$. The key tool for derivation of this von Mises expansion up to the second term will be Theorem 2.1. of Jurečková (1973).

Analogously, we get a similar second order asymptotic representation for the M-estimator. At first we will suppose the intercept α in (1) to be zero. In this case the M-estimator is defined as a solution of the equation

$$\sum_{i=1}^{N} x_i\psi(Y_i - b x_i).$$

Similarly as for R-estimators, under some appropriate conditions the first order representation of M-estimator is

$$Q_N(T_M - \beta) = \frac{1}{\gamma} \sum_{i=1}^{N} x_i(\psi(e_i) - \frac{1}{2}) + R_N, \quad \gamma = \int_{-\infty}^{+\infty} \psi'(x)f(x)dx.$$

And we will again find the asymptotic representation of $\sqrt{N}R_N$. Particularly, we will be interested in the special case $\psi(x) = cF(x)$, where F is the distribution function of errors in (1). For this choice of ψ the estimators T_R and T_M are first order asymptotic equivalent, i.e. $\sqrt{N}(T_R - T_M) = o_P(1)$. We will find that under some smoothness conditions on ψ and F the difference $\sqrt{N}(T_R - T_M)$ is of order $O_P(N^{-\frac{1}{2}})$ and derive an asymptotic representation of this difference. This representation also implies that the order $O_P(N^{-\frac{1}{2}})$ is exact. Of course, in practice we do not know the true distribution function F. But for the choice $\psi(x) = c(F_0(x) - \frac{1}{2})$ a suitably normalized difference $T_R - T_M$ can be used as a simple measure of goodness of fit, that the errors in the regression (1) have just the distribution F_0. The investigation of using our asymptotic results in the goodness of fit testing is in progress.
Unfortunately, unlike the R-estimator the M-estimator defined by (2) is neither location invariant nor scale equivariant. Making the M-estimator location invariant by adding the intercept presents only minor difficulties. No extra conditions are needed, but the second order term in von Mises expansion will be a little more complex. On the contrary, studentization of the M-estimator will require not only new stringent conditions on ψ and F but it also complicates the second order term in von Mises expansion in a nontrivial way, especially when the distribution function F of errors in (1) is asymmetric. These results, even in the most simple case of the M-estimator defined by (2), generalize the results of Jurečková, Sen (1990).