Hill's estimator based on two-step regression quantiles

J. Picek¹

¹ Department of Applied Mathematics, Technical University of Liberec, Hálkova 6, CZ-46117 Czech Republic

Keywords: Hill's estimator, regression quantile, two-step regression, R-estimator.

1 Abstract

Jurečková and Picek (2005) proposed a two-step regression quantiles in the linear regression model, ordering the residuals with respect to an initial R-estimate of the slope parameters. In this way they obtained a consistent estimator of $(\beta_0 + F^{-1}(\alpha), \beta_1, \ldots, \beta_p)'$, asymptotically equivalent to the regression α -quantile of Koenker and Bassett (1978).

Consider the linear regression model

$$\mathbf{Y} = \beta_0 \mathbf{1}_n + \mathbf{X}\boldsymbol{\beta} + \mathbf{E} \tag{1}$$

with observations $\mathbf{Y} = (Y_1, \ldots, Y_n)'$, i.i.d. errors $\mathbf{E} = (E_1, \ldots, E_n)'$ with an unknown distribution function F, and unknown parameter $\boldsymbol{\beta}^* = (\beta_0, \beta_1, \ldots, \beta_p)'$. The $n \times p$ matrix $\mathbf{X} = \mathbf{X}_n$ is known and $\mathbf{1}_n = (1, \ldots, 1)' \in \mathbb{R}^n$. The main point is to use a suitably chosen R-estimator $\hat{\boldsymbol{\beta}}_{nR}$ (rankestimator) as the initial estimate of $\boldsymbol{\beta}$, that itself is very close to the slope component of the α -regression quantile, and then order the residuals. Because the ranks are invariant to the shift, the R-estimator automatically estimates only the slope parameters in model (1). The possible R-estimator of $\boldsymbol{\beta}$ can be defined as follows:

$$\hat{\boldsymbol{\beta}}_{nR} = \operatorname{argmin}_{\mathbf{b} \in R^p} \mathcal{D}_n(\mathbf{b}), \tag{2}$$

where

$$\mathcal{D}_{n}(\mathbf{b}) = \sum_{i=1}^{n} (Y_{i} - \mathbf{x}_{i}'\mathbf{b})\varphi_{\alpha}\left(\frac{R_{ni}(\mathbf{Y} - \mathbf{X}\mathbf{b})}{n+1}\right)$$
(3)

is Jaeckel's measure of rank dispersion (Jaeckel (1972)),

$$\varphi_{\alpha}(u) = \psi_{\alpha}(F_{\alpha}^{-1}(u)) = \alpha - I[u < \alpha], \quad 0 < u < 1, \tag{4}$$

is the score function and $R_{ni}(\mathbf{Y} - \mathbf{Xb})$ is the rank of $Y_i - \mathbf{x}'_i\mathbf{b}$ among $(Y_1 - \mathbf{x}'_1\mathbf{b}, \dots, Y_n - \mathbf{x}'_n\mathbf{b})$, $\mathbf{b} \in \mathbb{R}^p$, $i = 1, \dots, n$. $\hat{\boldsymbol{\beta}}_{nR}$ estimates only the slope parameters, and there is no need to estimate the intercept for its computation. Having estimated $\boldsymbol{\beta}$ by R-estimate $\hat{\boldsymbol{\beta}}_{nR}$, consider the estimation problem of β_0 . Its solution, denoted as $\hat{\beta}_{n0}$, is the $[n\alpha]$ -th order statistic of the residuals $Y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}}_{nR}$, $i = 1, \dots, n$. Jurečková and Picek called the vector $\hat{\boldsymbol{\beta}}_n^{(1)}(\alpha) = (\hat{\beta}_{n0}, \hat{\boldsymbol{\beta}}'_{nR})'$ the two-step α -regression quantile and showed that $\hat{\boldsymbol{\beta}}_n^{(1)}(\alpha)$ very closely approximates the regression quantile $\hat{\boldsymbol{\beta}}_n^*(\alpha)$. Similarly it is possible to construct a version of the autoregression quantile in the linear AR(p) model.

The $[n\alpha]$ -order statistic $\hat{\beta}_{n0}$ of the residuals $Y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}}_{nR}$, $i = 1, \ldots, n$ very closely approximates $E_{n:[n\alpha]} + \beta_0$, where $E_{n:1} \leq \ldots \leq E_{n:n}$ are the order statistics of errors E_1, \ldots, E_n . In this way we can also estimate the order statistics of unobservable errors $E_{n:1}, \ldots, E_{n:n}$. For example, we denote the estimate of $E_{n:n} + \beta_0$ as $\hat{E}_{n:n}$:

$$\hat{E}_{n:n} = \max\{Y_1 - \mathbf{x}_1'\widehat{\boldsymbol{\beta}}_{nR}, \dots, Y_n - \mathbf{x}_n'\widehat{\boldsymbol{\beta}}_{nR}\}.$$
(5)

Estimates of extreme errors provide a tool for an inference on the tails of the distribution of the errors; for instance, the tail index of the distribution of errors can be estimated using the Hill's estimator based on estimated higher order quantiles:

$$T_H(k) = \frac{1}{k} \sum_{i=1}^k \log \hat{E}_{(n-i+1:n)} - \log \hat{E}_{(n-k:n)}, \quad k = 1, \dots, n-1.$$
(6)

In this contribution we shall discuss properties of estimator (6). We also compare our estimator (6) with the approach of Resnick and Stărică (1997) in the linear AR(p) model.

References

- B.M. Hill (1975). A simple general approach to inference about the tail of a distribution. Ann. Statist., 3, 1163–1174.
- L.A. Jaeckel (1972). Estimating regression coefficients by minimizing the dispersion of the residuals. Ann. Math. Statist., 43, 1449–1459.
- J. Jurečková and J. Picek (2005). Quantiles and R-estimates in linear models, submitted.
- R. Koenker and G. Bassett (1978). Regression quantiles. *Econometrica*, 46, 33–50.
- S. Resnick and C. Stărică (1997). Asymptotic behavior of Hill's estimator for autoregressive data. Comm. Statist. Stochastic Models, 13, 703–721.