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1 Abstract

Jurečková and Picek (2005) proposed a two-step regression quantiles in the linear regression model,
ordering the residuals with respect to an initial R-estimate of the slope parameters. In this way
they obtained a consistent estimator of (β0 +F−1(α), β1, . . . , βp)′, asymptotically equivalent to the
regression α-quantile of Koenker and Bassett (1978).

Consider the linear regression model

Y = β01n + Xβ + E (1)

with observations Y = (Y1, . . . , Yn)′, i.i.d. errors E = (E1, . . . , En)′ with an unknown distribution
function F, and unknown parameter β∗ = (β0, β1, . . . , βp)′. The n × p matrix X = Xn is known
and 1n = (1, . . . , 1)′ ∈ Rn. The main point is to use a suitably chosen R-estimator β̂nR (rank-
estimator) as the initial estimate of β, that itself is very close to the slope component of the
α-regression quantile, and then order the residuals. Because the ranks are invariant to the shift,
the R-estimator automatically estimates only the slope parameters in model (1). The possible
R-estimator of β can be defined as follows:

β̂nR = argminb∈RpDn(b), (2)

where

Dn(b) =
n∑

i=1

(Yi − x′
ib)ϕα

(
Rni(Y − Xb)

n+ 1

)
(3)

is Jaeckel’s measure of rank dispersion (Jaeckel (1972)),

ϕα(u) = ψα(F−1
α (u)) = α− I[u < α], 0 < u < 1, (4)

is the score function and Rni(Y − Xb) is the rank of Yi − x′
ib among (Y1 − x′

1b, . . . , Yn − x′
nb) ,

b ∈ Rp, i = 1, . . . , n. β̂nR estimates only the slope parameters, and there is no need to estimate
the intercept for its computation. Having estimated β by R-estimate β̂nR, consider the estimation
problem of β0. Its solution, denoted as β̂n0, is the [nα]-th order statistic of the residuals Yi −
x′

iβ̂nR, i = 1, . . . , n. Jurečková and Picek called the vector β̂
(1)

n (α) =
(
β̂n0, β̂

′
nR

)′
the two-step

α-regression quantile and showed that β̂
(1)

n (α) very closely approximates the regression quantile
β̂
∗
n(α). Similarly it is possible to construct a version of the autoregression quantile in the linear

AR(p) model.
The [nα]-order statistic β̂n0 of the residuals Yi −x′

iβ̂nR, i = 1, . . . , n very closely approximates
En:[nα] + β0, where En:1 ≤ . . . ≤ En:n are the order statistics of errors E1, . . . , En. In this way we
can also estimate the order statistics of unobservable errors En:1, . . . , En:n. For example, we denote
the estimate of En:n + β0 as Ên:n:

Ên:n = max{Y1 − x′
1β̂nR, . . . , Yn − x′

nβ̂nR}. (5)



2 Hill s estimator based on two-step regression quantiles

Estimates of extreme errors provide a tool for an inference on the tails of the distribution of
the errors; for instance, the tail index of the distribution of errors can be estimated using the Hill’s
estimator based on estimated higher order quantiles:

TH(k) =
1
k

k∑
i=1

log Ê(n−i+1:n) − log Ê(n−k:n), k = 1, . . . , n− 1. (6)

In this contribution we shall discuss properties of estimator (6). We also compare our estimator
(6) with the approach of Resnick and Stărică (1997) in in the linear AR(p) model.
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