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Abstract

In this work we study the procedure of dimension reduction for multivariate observations known
as Sliced Inverse Regression (SIR) presented by K. C. Li (1991). We prove that the algorithm
developed by Li (1991) to solve the problem of sliced inverse regression provides the same results
as those obtained by the maximum likelihood method of estimating the subspace that contains the
means of the groups induced by the slicing of the observations, under the assumption of normality
and equal covariance matrix.

The model presented by Li is to estimate, from a sample (xi
′, yi)′, 1 ≤ i ≤ N , a non parametric

relation between x and y, where p, the dimension of x is big. Of course, this is not possible except
in the case that N is big enough to overcome the curse of dimensionality. Li proposes an alternative
way to avoid this problem, the following non parametric model where y depends on x only through
a reduced number K of lineal combinations

y = f
(
β′1x, . . . , β′Kx,ε

)
(1)

where y is the response variable, x is the p-dimensional vector of covariables, ε is the error, which is
independent from x, βi are unknown vectors in Rp and f is an arbitrary function, f : RK+1 → R.
Li’s proposal is based on the idea of inverse regression: to put a model on E (x | y) and focus on the
estimation of the βi’s. Li proves that under a general condition this curve, once centered, falls in
a subspace of dimension K in Rp linearly related to de the subspace of interest, the edr (effective
dimension reduction) space, which is the one generated by β1, ..., βK .

This suggests an alternative method to estimate the this subspace SIR model, assuming that
the observations xi, which are classified in groups (slices) according to the value of variable y, have
a multivariate normal distribution normal with means belonging to a K-dimensional affine variety
in Rp, and the same covariance matrix Σ, that is

xhj ∼ Np (αh, Σ) , 1 ≤ j ≤ nh, 1 ≤ h ≤ H, αh ∈ V + a,dim (V ) = K,V ⊂ Rp (2)

Then we estimate αh and Σ by maximun likelihood method, and estimate the edr subspace
from these. We obtain the following MLE:

Σ̂ = W + B1/2C

[
I(p−K) 0(p−K)×K

0K×(p−K) 0K×K

]
C ′B1/2 (3)

where

B =
1
N

H∑

i=1

ni∑

j=1

(xi• − x••) (xi• − x••)
′ (4)
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W =
1
N

H∑

i=1

ni∑

j=1

(xij − xi•) (xij − xi•)
′
, (5)

and C is the orthogonal matrix obtained by the spectral decomposition of

B−1/2WB−1/2 = CΩC ′ (6)

where Ω is the diagonal matrix that contains the eigenvalues, ordered in a decreasing way. The
MLE of αh are

α̂h = Σ̂1/2DD′Σ̂−1/2 (xh• − x••) + x•• (7)

where D = [t1 · · · tK ] ∈ Rp×K with {t1, . . . , tK} the orthogonal eigenvectors of Σ̂−1/2BΣ̂−1/2

associated to the K largest eigenvalues. Finally, the estimates for the edr directions are

β̂k = Σ̂−1
xx Σ̂1/2tk, (8)

k = 1, . . . , K, where Σ̂xx is the sample covariance matrix of x. We also show that the subspace
that contains the inverse regression curve estimated by Li’s algorithm from a sample, and the one
that contains the means of every slice of the xi estimated by ML are the same one.

The usefulness of this approach lies on the possibility of viewing the estimators within a maxi-
mum likelihood strategy. This enables to apply to the obtained estimators the well known properties
of this general estimation method. Also, it allows to search for an alternative way of finding a ro-
bust estimator, different from those proposed so far (Gather, U., Hilker, T. y Becker, C. (2001,
2002)). This procedure that finds robust estimators for a model that allows maximum likelihood
estimation was employed by Garćıa Ben, Mart́ınez and Yohai (2004) to propose robust and efficient
estimates for multivariate lineal models. We define the τ− estimator for the SIR model by

(
α̃1, . . . , α̃H , Σ̃

)
= arg min

Σ>0;α1,...,αH∈V +a
|Σ| (9)

subject to

τ2 (d11 (α1,Σ) , . . . , dHnH (αH ,Σ)) = τ2
0 (10)

α1, . . . , αH ∈ V + a (11)

where τ is robust scale τ−estimator, V is a subspace of dimension K, τ0 is a constant selected to
be consistent under normality, and dij are the Mahalanobis distances

d2
ij (αi,Σ) = (xij − αi)

′Σ−1 (xij − αi) (12)

The resulting robust estimators will be presented, together with a Montecarlo simulation.
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