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Abstract

An obvious method for generating robust measures of location for p-dimensional distributions is to
simply apply robust univariate measures of location to each of the coordinates, e.g. the coordinate-
wise median. A drawback to this approach is that the resulting measure of multivariate location
is not affine equivariate. If one could select the coordinates in an invariant manner, however, i.e.
select p data dependent linear combinations of the variables which are invariant under nonsingu-
lar transformations of the variables, then applying coordinatewise measure of univariate location
to the transformed variables and then back-transforming gives an affine equivariant measure of
multivariate location. Affine covariant measure for the scatter matrix can also be generated using
coordinatewise measures of scale.

To be more specific, let Y = {y1, . . . , yn} be a p-dimensional data set. Suppose we are able to
define a nonsingular matrix A(Y ) such that the transformed p-dimensional data set Z = A(Y )Y
is invariant under nonsingular transformations of Y , i.e. A(Y )Y = A(BY )BY for any nonsingular
matrix B. If we then apply univariate measures of location and scale to each of the components of Z
producing µ(Z) ∈ Rp and σ(Z) ∈ Rp respectively, then affine equivariant measures of multivariate
location and scatter can be defined by

µ(Y ) = A(Y )−1µ(Z) and Σ(Y ) = A(Y )−1D(σ2(Z))(A(Y )′)−1,

where D(·) is a diagonal matrix whose diagonal elements are given by its vector argument.
One method for generating such an invariant transformation is as follows. First compute two dif-

ferent affine covariate estimates of scatter for Y , say Vo and V1, and then define A(Y ) = (a1 . . . , ap)
such that

Voaj = γjV1aj for j = 1, . . . , p or equivalently, VoA(Y ) = V1A(Y )∆,

where ∆ = D(γ1, . . . , γp). That is, A(Y ) are the principal component vectors of Vo, relative to the
Mahalanobis inner product defined via V1. The transformed variates Z = A(Y )Y can be viewed
as affine invariant principal components. In a personal communication, Hannu Oja has noted,
that under certain conditions, the matrix A(Y )−1 also represents a solution to the independent
component analysis problem.

If the univariate location and scale statistics have breakdown point 1/2, then we note that the
statistic (µ(Y ), Σ(Y )) breaks down only if the matrix A(Y ) approaches a singular matrix. The
breakdown point of (µ(Y ), Σ(Y )) is shown to be at least as large as the larger of the breakdown
points of Vo and V1 and can be considerably larger. Under point mass contamination, the breakdown
point is 1/2 regardless of the breakdown points of Vo and V1. Measures of robustness and the concept
of breakdown for the ICA problem are also discussed.

Finally, we note that one can produce affine invariant diagnostic plots by plotting the com-
ponents of Z or by making pairwise scatter plots of the components of Z. In a sense, this can
be regarded as projection pursuit without the pursuit. We give several examples which illustrates
the utility of the proposed methods. This talk is based on the joint work with Hannu Oja of the
University of Jyväskylä and Lutz Dümbgen of the University of Bern.


