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1 Introduction

Microarrays are a widespread technique to measure expression of thousands of genes simultaneously.
When applied to two different conditions (e.g. disease versus healthy) one is often interested in
those genes that express significantly different under the two conditions. It is generally recognized
that multiple testing corrections are necessary and the False Discovery Rate (FDR) is a useful
criterion to do so.

As opposed to common procedures in literature, we do not base the selection criterion on
statistical significance only, but also on biological significance. Therefore, we select only those genes
which are significantly more differentially expressed than some cut-point c. We use the Bayesian
interpretation of FDR: the probability that the parameter of interest lies in the null domain given
that the test criterion exceeds a threshold. We show how to improve the simple estimator by using
nonparametric deconvolution. We study the performance of the method using simulations and
apply it to real data.

2 Method

We focus on paired measurements, which are very common when using two-channel microarrays in
which, for example, diseased tissue is directly hybridized together with healthy tissue from the same
individual. The method can, however, be adjusted to deal with unpaired measurements as well. We
assume technical bias has been filtered out by so-called normalisation methods. For each gene g
we compute the average difference between the measurements (on log scale) of the two tissues over
the individuals (Yg). This random variable includes biological noise. We use the following simple
model:

Yg = µg + εg, (1)

where µg is the true differential expression for gene g and εg ∼ F is an error term.
In terms of hypothesis testing we would like to test simultaneously: H0g : µg ∈ A0, g = 1, . . . , G

versus its negation. In literature A0 = {0} is mostly used. We however prefer to use an interval
hypothesis A0 = {µg : µg < c}, because then rejection of H0g ensures that µg is further than c
away from ‘0’. Biologists already use (non-statistical) rules to select genes which are more than a
certain distance apart to ensure biological significance. The criterion Cg(t) equals 1 if the statistic
applied for testing H0g exceeds threshold t. For given cut-point c, the Bayesian interpretation of
the false discovery rate is the mean false positive probability (see also Broët et al. (2004)):
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Threshold t = t′ is chosen such that FDR(t′) < 0.05 (say) and genes are selected when Cg(t′) = 1.
Estimation of π0 and π(t) depends critically on estimation of fµ: the density of µg, whereas

p(t) may directly be estimated as the fraction of genes for which Cg(t) = 1. A naive estimator of
FDR(t) is obtained by simply ignoring the error process in (1) and estimating fµ by the (smoothed)
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empirical density of Yg. In a parametric Bayesian setting one could assume a parent density f on
the mean values µ1, . . . , µG, but there is no natural choice of f . This approach is taken in Scott
and Berger (2004), who also show that particular choices of f give completely different results.

The crux of the advanced FDR estimator is the recovering of the actual density of µg by
deconvolution. We assume µg to be i.i.d. with density fµ and to be independent of εg ∼ fε. Then,
Y1, . . . , YG are identically distributed random variables with density fY . Therefore, if fε = N(0, σ),
we have for the characteristic functions, using (1),

φY (ω) = φµ(ω) exp(−σ2ω2/2), so φµ(ω) = φY (ω) exp(σ2ω2/2). (2)

So, if we knew φY (ω), we could find fµ by Fourier inversion of φµ(ω). However, we only have data
from fY . We used the approach by Delaigle and Gijbels (2002) to deal with this problem. This is
a kernel density estimation method, where the kernel is defined on the level of the characteristic
function.

3 Results

Extensive simulations have been performed to evaluate the accuracy of the naive and advanced
FDR estimate. We show results for fµ = 1

16N(−2.5, 0.7)+ 7
8N(0, 0.9)+ 1

16N(2.5, 0.7) and σ = 0.848.
The test statistic is based on a simple Z-test.

We found that after deconvolution, the FDR estimator was very good over a wide range of
thresholds in case of moderate Gaussian error and improved upon the naive estimator. Other error
distributions have been studied and accuracy results varied according to smoothness properties
and size of the error. The method has been successfully applied to real data which resulted in a
biologically and statistically significant collection of genes which was validated with independent
techniques.
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FIGURE 1. Threshold (x) versus FDR (y). True = green, Naive = blue, Deconv = red
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