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1 Recalling the Least Weighted Squares

Considering the linear regression model

Yt = X ′tβ
0 + et =

p∑

j=1

Xtjβ
0
j + et, t = 1, 2, ..., T,

denote for any β ∈ Rp the t-th residual by rt(β) = Yt−X ′tβ and by r2
(h)(β) the h-th order statistic

among the squared residuals. For a weight function w : [0, 1] → [0, 1] define the Least Weighted
Squares (LWS) (Vı́̌sek (2000 b))

β̂(LWS,T,w) = arg min
β∈Rp

T∑
t=1

w

(
t− 1
n

)
r2
(t)(β). (1)

(Notice please that the weights are assigned to the order statistics, not to observations, i. e. in an
implicit way, hence the order of words in the name of estimator.) Having denoted the empirical
distribution function of the absolute values of residuals as

F
(T )
β (r) =

1
T

T∑
t=1

I {|rt(β)| < r} =
1
T

n∑
t=1

I {|et −X ′tβ| < r} ,

we can show that β̂(LWS,T,w) is one of solution of the normal equations
T∑
t=1

w
(
F

(T )
β (|rt(β)|)

)
Xt (Yt −X ′tβ) = 0. (2)

All solutions of (2) fulfill usual requirements on robust point estimators (see Hampel et al. (1986))
as the consistency (see Maš́ıček (2003)) and the asymptotic normality, they have controllable break-
down point and subsample sensitivity (in contrast to M -estimators, see Vı́̌sek (1996 a), (2002)).
They preserve the scale- and regression-equivariance of the Ordinary Least Squares (again con-
trary to M -estimators, see Bickel (1975) or Jurečková and Sen (1993)). Last but not least, there is
reliable, implemented algorithm for evaluating a tight approximation to the solution of extremal
problem (1) (the algorithm is similar to that one tested for the Least Trimmed Squares in Vı́̌sek
(1996 b), (2000 a)).

2 Reasons for instrumental variable

When the orthogonality condition IE {et|Xt} = 0 is broken, the ordinary least squares are not
consistent. Well-known example of the situation when the orthogonality condition fails, is the
model assuming that the explanatory variables are measured with random error or the model with
lagged response (and/or explanatory) variable, see e. g. Judge et al. (1985). The problem is usually
solved by considering, for a sequence of Iinstrumental variable {Zt}∞t=1, the solution of the normal
equations T∑

i=1

Zt (Yt −X ′tβ) = 0.

In nineties the Method of Instrumental Variable became a standard tool in many case studies of
dynamic regression model since the correlation of explanatory variables and disturbances frequently
appeared. Moreover, many papers considering possibilities how to select the instruments for expla-
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natory variables brought applicable results (including also easy available implementations), see e.g.
Arellano, Bond (1991), Arellano, Bover (1995) or Sargan (1988).

3 Instrumental weighted variable
Of course, similarly as the Ordinary Least Squares, the classical Instrumental Variables are vul-
nerable to the influential points. In analogy with (2) we can define the Instrumental Weighted
Variables estimator by T∑

t=1

w
(
F

(T )
β (|rt(β)|)

)
Zt (Yt −X ′tβ) = 0. (3)

Let us consider assumptions (compare with Vı́̌sek (1998)):
C1 The sequence {(X ′t, et)′}∞t=1 ⊂ Rp+1 is sequence of independent and identically distributed
random variables with absolutely continuous d. f. FX,e(x, r). Moreover, the existence of second
moments of (X, e) is assumed and the density fe|X(r|X = x) is uniformly in x bounded.
C2 Weight function w : [0, 1]→ [0, 1] is absolutely continuous and nonincreasing, with the deriva-
tive w′(α) bounded from below by −L, w(0) = 1.
C3 The instrumental variables {Zt}∞t=1 ⊂ Rp are independent and identically distributed with d. f.
FZ(z). Moreover, they are independent from the sequence {et}∞t=1. Finally, IE

{
w(Fβ0(|e|))Z1X

′
1

}

as well as IEZ1Z
′
1 are positive definite, IE ‖Z1‖ · ‖X1‖2 <∞ and for any β ∈ Rp and any v ∈ R

β′
{∫

[w(P (−r + x′β < e1 < r + x′β))− w(P (−r < e1 < r))] zx′dF (x, z, r)
}
β ≥ 0.

Then any sequence
{
β̂(IWV,T,w)

}∞
T=1

of the solutions of the normal equations (3) is weakly consis-
tent.

Numerical examples of the Instrumental Weighted Variables will be also presented.
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